IN THE CLAIMS:

Please amend the claims as follows:

Claims 1-12 (Canceled).

Claim 13 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate with laser light while positioning a light-converging point within

the substrate, so as to form a modified region due to multiphoton absorption within the substrate,

and causing the modified region to form a starting point region for cutting along a line along

which the substrate should be cut in the substrate inside by a predetermined distance from a laser

light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 14 (Previously Presented): A substrate dividing method according to claim 13,

wherein the substrate is a semiconductor substrate.

Claim 15 (Previously Presented): A substrate dividing method according to claim 14,

wherein the modified region is a molten processed region.

Claim 16 (Previously Presented): A substrate dividing method according to claim 13,

wherein the substrate is an insulating substrate.

ATTORNEY DOCKET NO.: 046124-5317

Application No.: 10/507,321

Page 3

Claim 17 (Previously Presented): A substrate dividing method according to any one of

claims 13-16, wherein a front face of the substrate is formed with a functional device; and

wherein a rear face of the substrate is ground in the step of grinding the substrate.

Claim 18 (Previously Presented): A substrate dividing method according to claim 17.

wherein the step of grinding the substrate includes a step of subjecting the rear face of the

substrate to chemical etching.

Claim 19 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate with laser light while positioning a light-converging point within

the substrate under a condition with a peak power density of at least 1 x 10⁸ (W/cm²) at the light-

converging point and a pulse width of 1 µs or less, so as to form a modified region including a

crack region within the substrate, and causing the modified region to form a starting point region

for cutting along a line along which the substrate should be cut in the substrate inside by a

predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 20 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate with laser light while positioning a light-converging point within

the substrate under a condition with a peak power density of at least 1 x 10⁸ (W/cm²) at the light-

converging point and a pulse width of 1 us or less, so as to form a modified region including a molten processed region within the substrate, and causing the modified region to form a starting point region for cutting along a line along which the substrate should be cut in the substrate

inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 21 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate with laser light while positioning a light-converging point within

the substrate under a condition with a peak power density of at least 1 x 10⁸ (W/cm²) at the light-

converging point and a pulse width of 1 ns or less, so as to form a modified region including a

refractive index change region which is a region with a changed refractive index within the

substrate, and causing the modified region to form a starting point region for cutting along a line

along which the substrate should be cut in the substrate inside by a predetermined distance from

a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 22 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate which is made of a semiconductor material with laser light while

positioning a light-converging point within the substrate under a condition with a peak power

density of at least 1 x 10⁸ (W/cm²) at the light-converging point and a pulse width of 1 µs or less,

so as to form a modified region within the substrate, and causing the modified region to form a

starting point region for cutting along a line along which the substrate should be cut in the

substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 23 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate which is made of a piezoelectric material with laser light while

positioning a light-converging point within the substrate under a condition with a peak power

density of at least 1 x 10⁸ (W/cm²) at the light-converging point and a pulse width of 1 us or less.

so as to form a modified region with the substrate, and causing the modified region to form a

starting point region for cutting along a line along which the substrate should be cut in the

substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 24 (Previously Presented): A substrate dividing method comprising the steps of:

irradiating a substrate which is made of a semiconductor material with laser light while

positioning a light-converging point within the substrate, so as to form a molten processed region

within the substrate, and causing the molten processed region to form a starting point region for

cutting along a line along which the substrate should be cut in the substrate inside by a

predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

Claim 25 (New): A substrate dividing method comprising the steps of:

irradiating a substrate with laser light while positioning a light-converging point within

the substrate, so as to form a modified region due to multiphoton absorption within the substrate,

and causing the modified region to form a starting point region for cutting along each line along

which the substrate should be cut and the lines being arranged in a lattice for the substrate, in the

substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness, so as to divide the substrate into a plurality

of chips along the lines along which the substrate should be cut.

Claim 26 (New): A substrate dividing method comprising the steps of:

irradiating a substrate made of a semiconductor material with laser light while positioning

a light-converging point within the substrate, so as to form a molten processed region within the

substrate, and causing the molten processed region to form a starting point region for cutting

along a line along which the substrate should be cut, in the substrate inside by a predetermined

distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such

that the substrate attains a predetermined thickness.

ATTORNEY DOCKET NO.: 046124-5317

Application No.: 10/507,321

Page 7

Claim 27 (New): A substrate dividing method comprising the steps of:

irradiating a substrate made of a semiconductor material with laser light while positioning a light-converging point within the substrate, so as to form a molten processed region within the substrate, and causing the molten processed region to form a starting point region for cutting along each line along which the substrate should be cut and the lines being arranged in a lattice for the substrate, in the substrate inside by a predetermined distance from a laser light incident face of the substrate; and

grinding the substrate after the step of forming the starting point region for cutting such that the substrate attains a predetermined thickness, so as to divide the substrate into a plurality of chips along the lines along which the substrate should be cut.